Search results for "linear response timedependent DFT"
showing 2 items of 2 documents
Stability, electronic structure, and optical properties of protected gold-doped silver Ag29-xAux (x = 0-5) nanoclusters
2017
In this work, we used density functional theory (DFT) and linear response time-dependent DFT (LR-TDDFT) to investigate the stability, electronic structure, and optical properties of Au-doped [Ag29−xAux(BDT)12(TPP)4]3− nanoclusters (BDT: 1,3-benzenedithiol; TPP triphenylphosphine) with x = 0–5. The aim of this work is to shed light on the most favorable doped structures by comparing our results with previously published experimental data. The calculated relative energies, ranging between 0.8 and 10 meV per atom, indicate that several doped Ag29−xAux nanoclusters are likely to co-exist at room temperature. However, only the Au-doped [Ag29−xAux(BDT)12(TPP)4]3− nanoclusters that have direct bon…
Stability, electronic structure, and optical properties of protected gold-doped silver Ag29−xAux (x = 0–5) nanoclusters
2017
In this work, we used density functional theory (DFT) and linear response time-dependent DFT (LR-TDDFT) to investigate the stability, electronic structure, and optical properties of Au-doped [Ag29-xAux(BDT)12(TPP)4]3- nanoclusters (BDT: 1,3-benzenedithiol; TPP triphenylphosphine) with x = 0-5. The aim of this work is to shed light on the most favorable doped structures by comparing our results with previously published experimental data. The calculated relative energies, ranging between 0.8 and 10 meV per atom, indicate that several doped Ag29-xAux nanoclusters are likely to co-exist at room temperature. However, only the Au-doped [Ag29-xAux(BDT)12(TPP)4]3- nanoclusters that have direct bon…